Project Number	TQP104
Project Title	Neural network based AI for racing games
Project Description	Artificial Neural Network (ANN) is a network of connected nodes used for
	information processing. Such networks are widely used for learning in games.
	Their applications include learning actions, behaviors, strategies, etc.
	The objective of this project is to create a neural network framework for
	racing games. The purpose of this work is to assist game designers and artists
	in their work to create AI players for games. It should consist of at least one of
	the following goals.
	Make the AI smarter, more realistic or more believable.
	Reduce the effort needed for the artist and game designers.
	Create an IDE environment for the framework.
	Real-time learning algorithms to be used in games.
	Many games already make use of neural network. A non-racing game that
	uses neural network is "The Sims". An example of racing game that uses
	neural network is "Colin McRae Rally 2.0 for (PlayStation)"
	("http://www.generation5.org/content/2001/cmr2_psx.asp"). Neural networks
	is used to train the racing AI for different turns and bends of the racing track.
	It is beneficial to use neural network because it improves replay value of the
	game. Racing AI will not always behave the same. This adds significant value
	to racing games. Different neural network techniques like Kohonen network,
	Multi-layer Perceptrons, Radial basis function, Hopfield network and other
	learning algorithms like Markov decision process, Bayesian learning,
	Q-learning should be explored for AI training.
Hardware/Software	Microsoft Visual Studio 2005 C/C++ environment