
Lecture title: Real-time in-game shader design and
Programming

Prerequisites: Direct3D, HLSL, previous class on game programming

Description: This class is designed to teach student how to create fast and efficient ingame
shader that best describe the concept art. The class is structured as a real world
programming task where the artist and engine engineer provide a visual in-game target
and spec for rendering. The class also explores challenges in facing in-game rendering
such as slow shader functions, inefficient normal maps, and overuse of texture maps.

Objective:
1. To understand production game graphics programming requirements
2. Interface with concept art department to achieve desired look in game.
3. Implement fast and efficient real-time game shader.

Class structure:
1. 3 days hands-on programming class
2. 2 programming assignments with similar specs and workflow

References:
1. Game Developer Conference course on real-time shading.
2. In-game working rendered objects.

Lecture Structure and Detailed flow
Specification for Consumer House Shading

Art: 2,000 tris, up to 2048x2048 diffuse texture, normal map and mask as appropriate.
The limits are the absolute maximum. if you can build great house in a
fraction of the resources and cheapest shader please do so.

Code Spec: please use the RGB specularity model and alpha channel glow. Real-time
rendering should look like Concept Art below

1. Artist Concept Drawing

2. Artist Model before real-time shaders

3. Realtime Lighting Shader Created for House

float4 af(v2f In, uniform float4 lightColor) : COLOR
{

……
 float3 input1 = UIColor_8221;
 float4 TextureMap_8914 = tex2D(TextureMap_8914Sampler, In.texCoord.xy);
 float input7 = TextureMap_8914.a;

 float4 ret = float4(0,0,0,1);
 ret = float4(input1, 1);
 ret.a = input7;
 ……
}

float4 f(v2f In, uniform float4 lightColor) : COLOR
{
 ……

 float4 TextureMap_8914 = tex2D(TextureMap_8914Sampler, In.texCoord.xy);
 float3 input2 = TextureMap_8914.rgb;

 float input7 = TextureMap_8914.a;

 float4 TextureMap_3753 = tex2D(TextureMap_3753Sampler, In.texCoord.xy);
 float3 input3 = TextureMap_3753.rgb;

 float3 N = input8; //using the Normal socket
 float3 diffuseColor = input2; //using the Diffuse Color socket
 float diffuse = saturate(dot(N,L)); //calculate the diffuse
 diffuseColor *= diffuse; //the resulting diffuse color
 ret += diffuseColor; //add diffuse light to final color
 float3 specularColor = input3; //using the Specular Color socket
 specularColor *= input4; //Multiplying Specular Color by the Specular Level
 float glossiness = 20; //the Glossiness socket was empty - using default value
 float3 H = normalize(L + V); //Compute the half angle
 float NdotH = saturate(dot(N,H)); //Compute NdotH
 specularColor *= pow(NdotH, glossiness);//Raise to glossiness power and compute final specular color
 ret += specularColor; //add specular light to final color

……
}

Real-time Game Engine Results

