Lecture title: Real-time in-game shader design and
Programming

Prerequisites: Direct3D, HLSL, previous class on game programming

Description: This classis designed to teach student how to create fast and efficient ingame

shader that best describe the concept art. The classis structured as areal world
programming task where the artist and engine engineer provide a visual in-game target
and spec for rendering. The class also explores challenges in facing in-game rendering
such as slow shader functions, inefficient normal maps, and overuse of texture maps.

Objective:

1. To understand production game graphics programming requirements
2. Interface with concept art department to achieve desired look in game.
3. Implement fast and efficient rea-time game shader.

Class structure:
1. 3 days hands-on programming class
2. 2 programming assignments with similar specs and workflow

References:
1. Game Developer Conference course on red -time shading.
2. In-game working rendered objects.

Lecture Structure and Detailed flow
Specification for Consumer House Shading

Art: 2,000 tris, up to 2048x2048 diffuse texture, normal map and mask as appropriate.
The limits are the absolute maximum. if you can build great housein a
fraction of the resources and cheapest shader please do so.

Code Specplease use the RGB specularity model and alpha channel glow. Real-time
rendering should look like Concept Art below



1. Artist Concept Drawing



2. Artist Modd before real -time shaders

3. Redltime Lighting Shader Created for House

float4 af(v2f In, uniform float4 lightColor) : COLQR

{
float3 inputl = UlColor_8221;
float4 TextureMap_8914 = tex2D(TextureMap_8914Sderpin.texCoord.xy);
float input7 = TextureMap_8914.a;
float4 ret = float4(0,0,0,1);
ret = float4(inputl, 1);
ret.a = input7;
}
float4 f(v2f In, uniform float4 lightColor) : COLOR
{

float4 TextureMap_8914 = tex2D(TextureMap_8914Sderpin.texCoord.xy);
float3 input2 = TextureMap_8914.rgb;



float input7 = TextureMap_8914.a;

float4 TextureMap_3753 = tex2D(TextureMap_3753Sderpin.texCoord.xy);
float3 input3 = TextureMap_3753.rgb;

float3 N = input8; /lusing the Normal socket

float3 diffuseColor = input2; /lusing the Diffus Color socket

float diffuse = saturate(dot(N,L)); /[calculaténe diffuse

diffuseColor *= diffuse; [Ithe resulting diffus color

ret += diffuseColor; /ladd diffuse light torfial color

float3 specularColor = input3; /lusing the Spdam Color socket

specularColor *= input4; /IMultiplying SpeculaColor by the Specular Level

float glossiness = 20; /lthe Glossiness soakas empty - using default value
float3 H = normalize(L + V); /[Compute the haifngle

float NdotH = saturate(dot(N,H)); /ICompute NdotH

specularColor *= pow(NdotH, glossiness);//Raisegimssiness power and compute final specular color
ret += specularColor; /ladd specular light fmal color






Real-time Game Engine Results



